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Abstract—Heat and mass transfer design parameters are readily available for flow in circular and flat ducts
for a variety of boundary conditions. However, the boundaries of the flow passages found in regenerators,
rotary heat exchangers, rotary mass exchangers, etc. are usually, of necessity, other than circular or
parallel plate. One very common exchanger made up of many flow passages looks like the end view of
several layers of corrugated cardboard. The boundary of the cross-section normal to the flow of one of
these passages may be represented by a sine curve from —= to n forming the upper portion of the duct and
a flat plate stretched between .~ n and = to form the bottom portion of the boundary.

This paper presents the computed friction factors and Nusselt numbers (or Sherwood numbers) of this
geometry for several aspect ratios and Biot numbers (or wall reaction rates). These results agree well with
the very limited experimental data reported in the literature. Since the data in the literature are limited, this
analysis provides additional design information on a very important heat and mass transfer geometry. The
results obtained could not be adequately estimated from the results of a circular geometry or a flat duct
because the corners in the sinusoidal duct provide an inherently different geometry. The results also differ
considerably from a triangular duct. An unusual result for the sinusoidal geometry is the behaviour of the

Nusselt number. It decreases with decreasing Biot Number.

NOMENCLATURE h,, wall heat transfer coefficient, con-
a, half duct height as shown in Fig. 1; stant; o
A’ area of duct; k, thel‘ma] ConductIVIty;
b, quarter duct widthasshownin Fig. 1;  Kws wall reaction rate constant;
Bi,  wall Biot number, Bi = 2ah,/k; K,  constant defined by equation (11);
C, heat capacity ; K,, dimensionless wall reaction rate;
C, concentration ; Np.,  Peclet number, Np, = Ng.. Np,;
C, dimensionless concentration ; Np,,  Prandtl number;
D, diffusivity; Ngzes Reynolds number, D,Up/u;
D, hydraulic diameter, D, = 44/P; Ns,  Sherwood number, k,.D,/D;
Eq, truncation error ; Nu,, local Nusselt number defined by
f dimensionless velocity equation (33);
f = uu/(dp/dz) (4a?); Nu,, local Nusselt number defined by
F, friction factor defined by equation (8); equation (36);
d, dimensionless velocity, u,/U ; D pressure
P, wetted perimeter;
R, ALAAN)?, ALNAE)?,
* Department of Chemical Engineering, Illinois Institute t tir(.:r{(e . r,) C/( é)
of Technology. > ’
t Department of Gas Engineering, IIT, and the Institute T, temperature ;
of Gas Technology. T, initial temperature ;
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T,, wall temperature ;
T, dimensionless temperature defined by
equation (21);
U, velocity component in z direction ;
U, average velocity in z direction ;
X, coordinate as defined in Fig. 2;
¥ coordinate as defined in Fig. 2;
z, coordinate as defined in Fig. 2;
Z,, hydrodynamic entrance length ;
o coefficients defined by equation (57);
7, aspect ratio, a/b;
¢, dimensionless length, zD,/4a’Np, ;
1, dimensionless coordinate, n = y/2a;
A angle defined in Fig. 3;
i, Viscosity ;
g, dimensionless coordinate, ¢ = x/2b;
P density;
T, dimensionless time ;
T, wall shear stress.
INTRODUCTION

THE CORRUGATED duct geometry is quite com-
mon in rotary heat and mass exchangers and is
becoming more so. The geometry is advan-
tageous because of its simplicity of construction
and large surface area. A limited amount of
experimental measurements of heat transfer
coefficients have been published [1]. No analy-
tical studies have previously been made on this
geometry. Because of the nature of the flow
passages as well as the small size of the passages,
it is very difficult to measure anything but
overall unsteady state measurements. Because
of the dearth of experimental data, the analytical
solution of this problem is important and
supplies much needed design information.

The corrugated duct geometry is illustrated
in Fig. 1. The flow is normal to the page. It is
observed that a single tube may be approxi-
mated quite accurately with a sine curve for
one portion of the boundary and a flat plate
on the remaining part. This geometry is in-
herently different than most geometries which
have been studied analytically including the
triangular duct. The reason is the shape of the
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corners which provide very high flow resistance
and poor heat transfer. The zero angle of
contact produces a much larger stagnant volume
than for triangular passages. The local heat or
mass transfer coefficient becomes very small
in the corners, thus causing a much lower
overall coefficient [1].

The primary methods which could be used
to solve this problem are:

1. Completely analytical solutions.

2. Variational methods which rely upon
using satisfactory trial functions.

3. Finite difference techniques.

The first is useful to prove that Nusselt
numbers approach a constant for large values
of the flow direction. A finite difference tech-
nique has been used here to obtain the numerical
results.

The unsteady state problem has been reduced
to a steady state problem in the initial time
period. The solution of heat or mass transfer
problem is a Graetz type problem and pro-
duces Nusselt numbers which can be used
in overall studies of the unsteady state problem
such as the ones performed by Locke [2] and
Schumann [3]. These later studies assume that
the heat transfer coefficient is known. The
analysis presented here determines it. The
effects of peripheral and axial conduction in
the solid have been neglected here and are
probably negligible in the mass transfer prob-
lems considered here. In the heat transfer
problem, the axial conduction effect is negligible
for certain regions of flow, duct size, and material
as indicated by an overall study [1, 4, 5]. The
effect of peripheral conduction is also negligible
in certain instances depending upon the material
and its thickness. This effect may be estimated
from a study performed for a rectangular
channel [6]. The heat or mass transfer in the
normal direction in the wall has been assumed
infinite. This is a good assumption for heat
transfer but may be important in certain mass
transfer problems.
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ANALYTICAL INVESTIGATION OF HEAT OR MASS TRANSFER

FORMULATION OF EQUATIONS

Velocity profile

All the assumptions normally made in a
Graetz problem will be used here [7, 8]. The
velocity profile will be assumed independent of
the heat or mass transfer processes occurring.
The fluid and flow matrix properties are
assumed constant. Density changes due to
temperature and concentration variations, there-
fore, will be neglected. This is a good assumption
for many heat exchangers as well as chemical
reactors with small changes in the number of
moles and a small heat of reaction and is par-
ticularly good for the sorption of water as in
a rotary dehumidifier. The momentum entrance
length will be assumed small and only the fully
developed profile will be calculated.

The flow geometry is indicated in Fig. 2.
Since the flow is independent of the unsteady

F1G. 2. Flow geometry.

state heat or mass transfer problem, all unsteady
state terms in the continuity and momentum
equations may be neglected. Since the flow is
fully developed, u, and u, are zero. With these
assumptions, the continuity equation becomes,

ou,
dz
The x, y and z momentum equations utilizing

the above assumptions and equation (1) becomes
respectively,

0. )

F_o

x @
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Equations (1){4) imply that dp/0z is a constant.
Lity=2a.n,x=2b.¢

Uzt
(— dp/dz)(2a)

so that equation (4) becomes

SO0
082 on?
The dimensionless velocity is related to the
average velocity U and f by the relation

u, _ _fEn
U [[fdédn

where | indicates integration over the region
bounded by = 0,and n = 1 + cos n¢.
The average velocity is

(— dp/dz)(2a)
U

&)=

&)

=g, (©)

U= Sffdedn (7

The friction factor F may be determined from
equation (7) and the usual definitions

where 7 is the average wall shear stress, P is
the perimeter, and A is the area. The friction
factor may be solved for as

2 2

1
1+ J {1+<§ysinn§)2}%dé

-1
[Nge-Jf fdEdn]

As usual in laminar flow, F . N, is independent
of the flow rate. The pressure drop in the

2

F =
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entrance region as well as the hydrodynamic
entrance length can be estimated from the work
of McComas [9]. The pressure drop in the
entrance region is

¥4
P, — P, = 4pU? (F-e~+K>. (9)
D,
The entrance length, Z,, is given by

Y/ U,/U?—-1-K
. _UnU) )
DyNp, C

where U, is the maximum velocity.
C is from equation (8) in the form F = C/Ng,

" - o

The relation between the dimension a and the
hydraulic diameter is

D, 2

2a ! b EA
1+j[1+<§ysinnf>] dé

0

(12)

A HEAT TRANSFER PROBLEM

The usual experimental steady state technique
of measuring heat transfer coefficients in a
single tube cannot be used for the geometry
under consideration [2]. In a single tube, a
fluid with a large thermal capacity may be
circulated on the outside of the tube to maintain
the surface temperature of the tube constant.
One of the principal advantages of the sinu-
soidal duct is the fact that it fills the entire space
when combined with other tubes of the same
geometry. However, the fact that it does exist
in a matrix prohibits the above steady state
experiment. Therefore, an unsteady state ex-
periment must be performed. Locke [2] dis-
cussed many different experimental methods
of determining the heat transfer coefficient.
Howard [1] has performed a very accurate
experiment. The temperature of the matrix is
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brought to a uniform temperature by passing
a gas of uniform temperature through it for a
sufficient amount of time. The matrix is then
moved quickly to a stream parallel to the first
but at a different temperature by means of a
sliding mechanism. This experiment closely
describes the actual operation of a rotary
heat or mass exchanger where different portions
of the exchanger are exposed to different
streams.

The equations which describe the tempera-
tures are:
In the gas phase

cT oT
pC, = + pCpu,

0z
2T 9T 62T>
_k<ﬁ+a}7+5g. (13)

Where viscous dissipation has been neglected
and fully developed flow is assumed. Calculated
values of the momentum entrance length are
presented in the results section. The incoming
temperature of the gas is

T(t,x,y,0) =T, (14)
In the solid phase
o7,
C,. > =kV?T,
Ps s ot sV s (15)
T0,x,y.2) = T, (16)

The heat flux across the layer between the
gas and solid phase is:

—k (Z—Z;— = h,[T(interface) — T(interface)]
oT,
= =k =2 17
s an ( )

where n is the normal at the surface.

A layer which produces an effective resistance
between the fluid and solid is assumed to exist
to take into account the possibility of fouling
by a thin layer of stagnant fluid such as oil or
deposition of a crud in the exchanger. Substitu-
tion of dimensionless quantities into equation
(13) yields
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p(2a)26T oT
Np,. >N
P # To (é ac
[ , 2T a2T ( ) 62T]
= "”‘2 .2a) A
L V4 >
where

, ot 3 L
t'=— and 7, = acharacteristic time.
To

¥4

‘= Ny..D,QaDy)

NPe = NRe'NPr'

The characteristic time of measurement is
at least on the order of one second, and using
1, equal to one second produces a value of
10~ 4 for the coefficient of 8T/ot'.

For Peclet numbers from 10 to 100, the
coefficient of 82 T/d(? varies from 1072 to 104,
Since the coefficients of these terms are extremely

small, these terms may be dronned to vield the

Siiiiii, LAIUOU vWLiidd sax UV LIV WU YIUIG AV

equation

aT 5T

o T =1 o + (18)
with the initial condition
T 10 =T (19)

Because of the large thermal inertia of the
solid relative to gas, the temperature of the
solid may be assumed constant during the
initial transient period so that equations (15)-
(17) may be replaced with

oT k,
—k%’w =h(T, - Ty) = E(Tw - Ty, (0

where w indicates the layer between gas and
solid and ¢ indicates the thickness of this layer
and is assumed constant. The solution of
equations (18)}(20) can yield results which will
relate the mixing cup inlet and outlet tempera-
tures to, Np,, 9, and the wall Biot number,
2a.k,/0.k. Although the outlet temperature
is a function of time, the required value at t = 0
can be obtained by extrapolation.
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In terms of the dimensionless temperature,

= T -—T;
= 2, 21
=17, b
Equations (18)20) become
oT ,0*T  o°T
== 22
g(&,n) = e + P 22
T(,7,0) =1 (23)
-2 - BT, 4)
on|,,
where
=
n= 2a.

MASS TRANSFER—A CATALYTIC REACTOR

The mass conversion in a catalytic reactor
may be described by equations (22)(24) if the

raactinon rate ic decorihed in terms of one
Awawiivil P 13 A vy 0 WwOowl LUWW ALR VWAL LKLY L \SLANS

component

2/"

P =k,.C,

on (23)

where the equation of species is to be written
in terms of mass units—since the mass of the
system is constant [8]. This problem may be
described by replacing C = C/C; in equations
(22) and (23), where C,; is the initial mass fraction,
and replacing equation (24) by

oC —
i K,C (26)
where
k., .2a
K, =2
w D £

the dimensionless wall reaction rate.

MASS TRANSFER—SORPTION

The sorption of water on a salt is an unsteady
state problem. However, the estimates and
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consequent simplification of the transfer equa-
tion apply to transfer of water from the gas
phase to the solid. Although the total mass of
the system is not constant, the difference
between the inlet and outlet mass flow rate
cannot be changed by more than one per cent
due to the loss of water vapor. Thus, the velocity
may be described by equation (4). The boundary
condition, when using the diluteness assump-
tion, may be expressed as

_p% _

on

where C , is the equilibrium mass concentration
in terms of the vapor pressure in equilibrium
with the hydrate. The equilibrium vapor pressure
at constant temperature is independent of the
concentration in the solid (unless a new hydrate
is formed) so that C,, is independent of time.
If C is defined as

kw(C - Ceq) (27)

=~ C—-Cgy

C = —C—i_-———-c_eq (28)
the boundary condition becomes

oC —

— = —K,C. 29

on

Replacement of C in equations (22) and (23)
produce the identical set of equations to be
solved as in the previous two sections. The
fact that the physical process is assumed
isothermal is reasonable in the initial time
period and for a solid with a large thermal
capacity. An important extention of this problem
has been presented by Onischak and Gidaspow
[10] where they show that an engineering
pseudo-equilibrium value may be used instead
of the true equilibrium value. This pseudo-
equilibrium value is reproducible and almost
independent of time and flow rate.

OVERALL PARAMETERS—FULLY DEVELOPED
SOLUTION
The mixing cup concentration or temperature
at any axial distance is defined by
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U.T,.A=(fu,. T .dxdy. (30)

In terms of the previously defined dimensionless
velocity,

T.={9&nTE . dédg. (1)

The local average heat transfer coefficient
h.(z) defined at a given z but an average over
the cross-section is defined by the simple
overall balance
dT, = [ 1
A.U.pCp—"=—-hP |T,, - =¢$T,d 2

P P dZ z (m P§ w s) (3 )
where the last term in this equation is an
average wall temperature over the boundary at
any {. In terms of the previous dimensionless
variables,

__ 1/D}\* (dT,/d()
. = ‘z<2a> T-1r &
where

Nu, = hZ—kDﬁ (34)

and T, represents the last term in equation (32).

An overall local heat transfer coefficient
h,,(z) which is defined in terms of the solid
temperature is also useful to the engineer. It is
defined as

dT, -
AUpCp—" = —h, P(T, — T,). (35)
dz
In terms of dimensionless variables
1 {D,\*dT, /d¢
= — |} —=T 36
Nuoe = =3 <2a> T (36)

The Nusselt number, Nu,,, is more useful than
Nu, to the engineer, but Nu, is normally re-
ported in the literature because it varies much
less with boundary conditions and therefore
may be reported more accurately. Also, the
values of Nu, approach the constant flux
Nusselt numbers as the Biot number approaches
zero. One may be obtained from the other
because a relationship may be derived between
them in terms of the boundary conditions by
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integrating the partial differential equation in
the gas over the cross section and using Green’s
theorem in the plane to obtain

d
pCPd—z Sju, .T.dxdy

2T 6T
—k “( 5t 52 )dx dy (37
=k$VT.nds
T (38)
dn

Integration of the boundary conditions over
the boundary yields

dT

ke = hw.i§(:rw—

_hz (T‘m

The definition of h, in equation (40) may be
seen to be coincident with the definition of
equation (32) by substitution of equations (30)
and (40) into equation (38).

Then Nu, may be related to Nu,, by combin-
ing equations (30), (32), (39) and (40)

T)ds  (39)

or by definition

dT

1
kg = F§des). (40)

i, 5 1
pCPUA—CE = —Pm(Tm - T,). (41)

Comparison of equation (41) with (35) yields
an expression for h,,. In terms of Nusselt
numbers, the desired relation is

1 1 1
Nu,,_ Nu, | BiD,2a) “2)
Therefore, it is seen that only Nu, need be re-
ported even for this unusual geometry. When the
resistance at the wall is negligible (Bi = oo), then

Nu,, = Nu,.

The existence of a fully-developed solution
to this problem further reduces the amount of
results which must be reported. The form of the
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fully developed solution can be obtained by
separation of variables.

Let T = Z({)G(¢,n) and separate variables
to obtain:

dZ, 2y
o THZ=0 (43)
62G %G
552"+ 5 +B.9.G,=0 (44
aGk .
= BiG,|, 45)

Orthogonality may be demonstrated by com-
bining two solutions G, and G; and integrating
in the usual way [11] to obtain

I [G.V*G; — G;V*G,

+ (B} — BD9G;.Gl1dEdn =0,  (46)
where & = &/y.
Green’s theorem states:
{§ (GV?G; + VG,.VG) dE dy
= §G,VG;.nds. 47
Equation (46) may be recast as
$(G,VG; — G,VG,).nds
= (B — BD§9G;. G, dZdn.  (48)

Boundary conditions substituted in equation
(48) then require for k # j

1] 9G,G, dZdn = 0,

which is the condition of orthogonality. The
general solution to the problem may be written
as:

T-= i A,exp(— B0 GEn)  (49)
where

{fg.G,dédn

A "~ [fg.G?dEdn

(50)

Since g is positive within the region, 2 are all
real and positive and the eigenfunctions form
a complete set. If the series converges, the first
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term of the solution must become the dominant
term for increasing &.

The quantities of interest approach the
following fully developed forms:

T = Ay exp (B3 G(&, ) (51)

T,=(A;.{[g.G).exp(—p2&)  (52)
_1 Dh 2 2

Nuo: = Z <Z) Bl (53)

Therefore the numerical solution need only
be continued until T, and T,, become straight
lines on semilog paper and until Nu,, (or Nu,)
become a constant.

SOLUTION BY FINITE DIFFERENCES

Since the equation for the velocity profile
does not involve the temperature function, the
velocity profile may be determined indepen-
dently of the temperature profile. Then, the
temperature profile, and consequently the total
heat transfer, can be solved for after the velocity
profile is substituted into the energy equation.

A pseudo-unsteady state technique was used
to solve for the velocity profile. This technique
consists of adding an unsteady state term to
equation (5) which becomes

(54)

The steady state solution to this equation is the
solution to equation (5). Equation (54) was
treated by a second order finite difference
approximation and iterated until it converged
to a steady state answer. The usual implicit
molecule was used to solve this equation.

On the grid next to the lower boundary, the
explicit method may be used since no additional
stability restriction will be added. However, on
the irregular wall, a completely implicit mole-
cule was used. Use of an explicit molecule on
the irregular boundary would introduce a very
restrictive stability requirement on the entire
calculation.

The energy equation with boundary condition
given in equation (24) and initial condition
given in equation (23) were solved by the method
of Dufort and Frankel [12]. The three-dimen-
sional analogy of Dufort and Frankel's three
grid finite difference scheme is:

T(I + 1,J.K) {g(J, K) + 2R(1 + 93)!
=TI — 1,J,K){g(J,K) — 2R(1 + %)}
+ 2v2R{T(I,J + 1,K) + T(I.J — 1, K)!

+ 2R{T(L,J,K + )+ T(LJ,K — 1)}.  (55)

The fact that the velocity is very small near the
wall could cause severe stability restrictions.
Use of this method alleviates this problem.

Since the boundary condition on the wall
involves the derivative at the wall, a satisfactory
expression which is of the same order of error
as the interior molecule must be used. A five
point expansion is satisfactory. This is obtained
by expressing the normal derivative in terms of
1ts components.

Foliowing Greenspan [13] a six point Taylor
series expansion was used to represent the
normal derivative:

)

GT_QT sin”+a—7j cos/”t*Zch
an_an A aé. = idis

i=0

(56)

where A is the angle shown in Fig. 3.

Wwall
P 3
A
» rln
5 2
K-l
»=0¢ .
Node points

J-1 J

F1G. 3. Irregular boundary geometry.
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A Taylor series expansion for points T,
through T about point 0 is substituted into
the right hand side of equation (56). Like
derivatives are matched and the resulting
equations are solved simultaneously for ay—os.
The values of «; used for the molecule about
point O are given below:

(h + 2d)y cos A
Oy =

d(h + d)
_ —(hd + eh + de)sin 1
%2 = e + h)
oy = msm A

d (57)
as = 'h_2 Sin A.
__hdycosA —d{d + h)sin4
% = n2d + h)
(hde — h?d + d2e)sin A — hey(h + d)cos i
n= 1% de

By symmetry, these coefficients can be used to
obtain the proper coefficients for a similar
equation about point 4. In order that no stability
restrictions be introduced at the boundary,
equation (56) is written in a completely implicit
manner about points 4 and 0. Furthermore, the
equation about point 1 is also implicit. These
three equations are solved simultaneously for
the temperatures at points 1, 0, and 4. There are
locations on the irregular boundary where
more than three simultaneous equations are
needed and, in general, the smaller the grid size
chosen, the greater the number of simultaneous
equations at any boundary point.

Along the lower boundary, equation (57)
is also used; however, it simplifies to a three
point molecule because of the regular geometry
shown in Fig. 4. An explicit molecule was
sufficient at point 1 so T at point 0 can be
calculated directly.

An additional complication occurs due to
the shape of the corner of the duct, which turned

Wall
J=9°°

FiG. 4. Lower boundary geometry.

out to be a formidable problem. The corner
geometry, with a grid overlay is illustrated in
Fig. 5. The small portion of the corner including
points 1-7 had to be removed from the analysis
since no suitable molecules are available for
these. As the grid size is made smaller, the size
of the region removed decreases, and in the limit
it becomes negligible. Notice that in Fig. 5, no
points in the region are lost. In this corner
region, points 8-14 were solved for simul-
taneously with the implicit methods previously
mentioned.

\Qs

-
18] 14

N

17 13] 10 J

16 12 9 6 4 2 [
Fi1G. 5. Corner geometry.

RESULTS

Accuracy of numerical procedure

In any finite difference investigation, it is
necessary to test the convergence and stability
of the results. In the absence of any theoretical
solutions, convergence and stability may be
tested by obtaining results for different grid
sizes. Consistency of the finite difference equa-
tions for the velocity profile is guaranteed and
the truncation error is of the order
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E; = O(A1) + O(A&)? + O(An)?
Specification of R yields
E; = O(A&)~.

The truncation of the energy equation is also
of the same order with the same definition of R.

The results for a grid size of 55 compared to
that of {¢ on the same iteration agreed in the
third decimal place for the velocity at any point
in the region. In order to compare this technique
with published results, the velocity program
was simplified to the case of a triangular duct
and friction factors were calculated and com-
pared to published values. For an aspect ratio
of one, our calculated friction factor was 13:26;
Sparrow [14] reported a value of 13-18 for this
same case.

Although all reported results for the tem-
perature problem were obtained with a A¢ = 55
grid size, a program with a A¢ = {5 grid size
was also written for convergence testing. Due
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checking the results from the two temperature
programs was to use a very large Biot number
for the flux problem and compare the average
internal temperature to the program with
constant temperature wall. The infinite Nusselt
numbers agreed in the third significant figure
and as the Biot number increases, the average
interior temperatures approached each other.

Furthermore, the two Nusselt numbers in
equations (33) and (36) were calculated and
checked against each other with use of equation
(42). The comparison of these is shown in
Table 1 for selected values. It is seen that
difference in these values decrease with in-
creasing Biot number.

CALCULATED RESULTS
Table 2 gives the values of F . N, calculated
by equation (8) and entrance length from
equation (10) for various aspect ratios. These are

Table 1. Comparison of accuracy of & and 5 grid sizes, aspect ratio of one

1

1 1 1/Nu + 1/Bi.(D,/2a)

B N N —
! Ho Nug, Nu ' B(Dy2a) 1/Nuy
Ax = 75
001 1183 000714 140 1248 089
01 1380 0-0668 149 1312 0-88
10 1590 04972 201 186 0925
100 1972 1:567 0640 0-633 0995
1000 2077 2023 0-494 0-493 0999
Ax =+
001 1415 000737 135 1247 091
o1 1:308 00703 142 13-16 0925
10 1524 0-5085 197 189 0962
100 1974 1:579 0644 0630 0980
1000 2093 0-490 0999

2039

0491

to the nature of the equations which are solved
along the boundary, a separate program had
to be written for each grid size so that only
these grid sizes were investigated. The tempera-
ture at any grid point agreed to the third
significant decimal again. A second means of

plotted in Fig. 6 with values for the triangular
duct. For a given aspect ratio, the area of the
triangular and sinusoidal duct are equal and
the hydraulic radii differ by 25 per cent at
an aspect ratio of one. From Fig. 6 it is evident
that the pressure drop is lower for the sinu-
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Table 2. Calculated friction factor and entrance length and shows a maximum deviation of 65 per
cent over our calculated values of F.Ng,. As

2= F.N. @ Z. g U Dy the aspect ratio increases, the friction factors
DN, U 2a for the triangular and sinusoidal duct approach

025 968 00490 0OSL3 2168 2355 0978 each other. The entrance length is shown in
050 1005 00341 00555 2011 2290 0931  Fig 8 and shows the entrance length for the
100 1114 00294 00465 1809 2209 (809 sinusoidal duct is longer than that of the

2:00 1295 00141 00401 1743 2196 0-604

300 1389 00080 00398 1813 2241 0472 developed velocity profile for the half-duct

0062
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FiG. 6. Friction factor for sinusoidal duct. Fi1G. 8. Entrance length for sinusoidal duet,

soidal duct than for the triangular duct. This
statement holds even if the pressure drop for
the two ducts are compared at equal flow rates.

The data of Howard [1] is compared in Fig. 7
o5
Thi(s) gtgdy
o y=0
A =089 Howard (]
F [e32 ) od
00255 700 500 ' ]

1
06 07 08 0% 10
Re

Fig. 7. Comparison of measured and calculated friction  Fig. 9. Fully developed velocity profile for an aspect ratio
factors. of one.
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with an aspect ratio of one. The isoclines are
lines of constant u,/U. It is interesting to note
that the maximum velocity occurs closer to the
center than those of the triangular duct [14]
for similar aspect ratios.

For Howard’s data, the ducts had aspect
ratios of 0-85 and 0-89. For these aspect ratios,
the entrance length parameter was Z,/D,N, =
0-048. His data was taken over a range of di-
mensionless lengths corresponding to:

74 > > 037

Re™'h

This indicates that the duct length was at least
8 times the hydrodynamic entrance length.

On the other hand, Kays and London [15]
reported FNy, to be between 18 and 19 for a
sinusoidal duct with an aspect ratio of 2-77. The
calculated value of FNg, was 13-8. The calcula-
ted entrance length was Z,/D,Ng, = 0:0392.

These data were taken over a dimensionless

- 2dVSN RGN SiIN WRASAL G LaITALSIRAS

length range of:

e

0020 < < 0:041

¥ Re
This indicates that all the data were taken in the
hydrodynamic entrance region and hence our
results should not and do not agree with
theirs.

Figure 10 shows the limiting Nusselt numbers
as a function of aspect ratio for the case of
constant wall temperature. This corresponds
to the boundary condition given in equation (19)

26
. e
f: A Trigngulor duct
8 2.2..._
£
-
2 p0l
I8 | i i | L. 1
04 08 1-2 16 20 24 28

Aspect ratio, ¥y

FI1G. 10. Nuy, for constant temperature wall vs. aspect ratio.
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where Bi = oo. For the case of an equilateral
triangle, the value of this Nusselt number is
2:35 [16]. This corresponds to an aspect ratio
of about 173 and from Fig. 10 the limiting
Nusselt number i1s approximately 237 for the
sinusoidal duct. Howard presents Nusselt num-
bers for aspect ratios between 0-85 and 0-89 as
shown in Table 3. The mean value of Nu is

Lable 3. Data of Howard converted to units of the study

Friction factor
F Ng, F.Ng. K

Nusselt number
Nge Nu=j Ng. N§,

Metal: brass 5 = 0-85

0-0231 496 1145 000524 490 225
00595 185 110 000830 305 1-97
01747 611 1068 00143 182 228
0-420 241 1012 00248 120 261

Calculated value 2-045

Metal: stainless steel 7 = 0-89

00231 496 1150  0-00641 311 177
00580 188 1090 00119 183 193
0-1389 735 1020 00181 122 1-96
0410 246 1010 00301 72:5 1-94
00455 42-6 172
0-0726 243 1-56

Calculated value 2070

Note: Calculated Peciet number in air is 0-671.

199 and the variance about this value is small.
The calculated values of Nu for the constant wall
temperature case corresponding to this aspect
ratio range is betwen 205 and 2-06. Since
Howard took heat transfer data in stainless steel.
and brass ducts, the assumption of a constant
temperature wall should be good in light of the
high thermal conductivity of the metal.

Figure 11 shows how the dimensionless tem-
perature in the duct varies as the wall resistance
changes. These solutions correspond to the
boundary condition given in equation (19)
and were obtained for a single aspect ratio,
y = 1-0. This plot can be used with equation (36)
to obtain Nu,, as a function of distance and
equation (42) to obtain Nu,. Table 4 gives the
values of the limiting Nusselt numbers for the
variable wall resistance cases. It should be noted
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Fi1G. 11. Temperature vs. distance for an aspect ratio of one.

Table 4. Limiting Nusselt numbers for an
aspect ratio of one

K, or B Nuy,,
0-010 1-415
0-100 1-308
1-:00 1-524

100 1974

100-0 2096

o 2:12

that the limiting values of Nu were in every case
lower than those of the constant temperature
wall. Reported values of the limiting Nusselt
numbers for finite Biot numbers for other types
of geometries are usually higher than those of
the constant temperature wall [16]. Thus,
it appears that the sine duct is a rather unique
heat transfer geometry.

CONCLUSIONS
One might expect that the geometry in Fig. 1
could be represented by something between a
circle and flat plate configuration. However the
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friction factors and Nusselt numbers for these

geometries are much higher than those of the

sinusoidal profile. The friction factors for the
triangular geometries, shown in Fig. 6, is within

10 per cent of those for the sinusoidal duct at

high aspect ratios (greater than 1-5), but at

lower aspect ratios, they differ considerably.

This indicates that the sinusoidal duct is more

efficient than the triangular duct since the hy-

draulic diameters of these two configurations
are very close. The Nusselt numbers calculated
for constant temperature wall agree well with

data previously published. In general th= limi-

ting Nusselt numbers for the sine duct are lower

than for other geometries. However, at an aspect
ratio of 1-7, the Nusselt number for this geometry
is higher than that of a triangular duct.

These seemingly inconsistent results arise
from the corner of the sinusoidal duct where
there is a relatively large dead space. This i
reflected in the large entrance lengths found for
this configuration as compared with other
geometries.
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ETUDE ANALYTIQUE DES COEFFICIENTS DE TRANSPORT DE CHALEUR OU DE
MASSE ET DE FROTTEMENT DANS UN ECHANGEUR DE CHALEUR OU DE MASSE
A TUYAUX ONDULES

Résumé—Les paramétres pour prévoir le transport de masse et de chaleur sont disponibles facilement
pour I'écoulement dans des tuyaux circulaires ou plats avec un grand nombre de conditions aux limites,
Cependant. les fronti¢res des conduits trouvés habituellement dans les régénérateurs, les échangeurs de
chaleur tornants, les échangeurs de masse tournants, etc, ne sont forcément ni circulaires ni a plaques
paralléles. Un échangeur trés ordinaire constitué de nombreux conduits ressemble 4 la vue en bout de
plusieurs couches de carton ondulé. La frontiére de la section droite normale & 'écoulement d’un de ces
conduits peut &tre représentée par une courbe sinusoidale allant de —n & # formant la portion supérieure
du conduit et d'une plaque plane étendue entre — = et 7 pour former la portion inférieure de la frontiére.
Cet articule présente les coefficients de frottement et les nombres de Nusselt (ou les nombres de Sher-
wood) calculés pour cette géométrie avec plusieurs allongements et nombres de Biot (ou vitesses de réaction
a la paroi). Ces résultats sont en bon accord avec les données expérimentales trés limitées signalées dans
la littérature. Puisque ces données sont limitées, cette analyse fournit une information supplémentaire
de prévision sur une géométrie trés importante du point de vue du transport de chaleur et de masse. Les
résultats obtenus ne pourraient pas étre estimés d’un fagon adéquate & partir de ceux d'une géométrie
circulaire ou d'un tuyau plat parce que les coins du tuyau sinusoidal correspondent 4 une géométrie
proprement différente. Les résultats différent aussi considérablement de ceux d'un tuyau triangulaire.
Un résultat remarquable pour la géométrie sinusoidale est le comportement du nombre de Nusselt qui
décroit lorsque le nombre de Bior décroit.

ANALYTISCHE UNTERSUCHUNG DES WARME- ODER STOFFQ‘BERGANGS UND DES
REIBUNGSKOEFFIZIENTEN IN EINEM WELLROHR-WARME- ODER
STOFFUBERTRAGER

Zusammenfassung—Fiir Strémungen in Rohren und zwischen parallelen Platten unter verschiedenen
Randbedingungen lassen sich die, fiir Auslegungsrechnungen benétigten Wirme- und Stoffaustausch-
Parameter leicht auffinden. Indessen handelt es sich bei den Strémungsquerschnitten von Regeneratoren,
rotierenden Wirme- und Stoffaustauschern etc. aus technischen Griinden meist um andere, als die oben
beschriebenen Geometrien.

Eine haufig zu findende Austauschbauart mit vielen Strémungskanilen zeigt eine Querschnittsform,
dhnlich einer Schichtung aus mehreren Lagen Wellpappe. Die Berandung eines dieser, senkrecht zur
Stréomungsrichtung geschnittenen Kanile kann durch eine Sinuskurve fiir die Kanaloberseite und eine
ebene Platte fiir die Kanalunterseite—jeweils mit den Intervallgrenzen -z und +n—dargestellt werden.

Die vorliegende Arbeit zeigt berechnete Reibungsbeiwerte und Nusselt-Zahlen (oder Sherwood-Zahlen)
fir diese Geometrie bei mehreren Abmessungsverhiltnissen und Biot-Zahlen (oder Wandreaktionsraten).

Diese Ergebnisse stimmen recht gut mit den sehr spirlichen, in der Literatur zu findenden experimen-
tellen Daten iberein. Da die Literatur sehr wenig Daten enthiilt, bietet diese Untersuchung zusitzliche
Information fiir die Auslegung einer sehr wichtigen Wirme- und Stoffaustauscher-Geometrie. Es war
nicht moglich, die erhaltenen Resultate zufriedenstellend aus den Ergebnissen fiir das Kreisrohr oder den
ebenen Spalt herzuleiten, da aufgrund der Ecken im Kanal mit teilweise sinusformiger Berandung eine
wesentlich verschiedene Geometrie vorliegt. Die Ergebnisse zeigen auch betrichtliche Abweichungen
von denen cines Dreieck-Kanals. Ein ungewohnliches Ergebnis bei der Sinusgeometrie ist das Verhalten

der Nusselt-Zahl ; diese nimmt ab mit fallender Biot-Zahl.

AHAJUTUYECHOE NCCIEJOBAHUE TEIJIO- 1 MACCOOBMEHA U
KODQONMIIUEHTA TPEHNA B TEILIO- U MACCOOBMEHHHUKAX THITA
U30THYTBHIX TPVBOR

Aunorami— 18 yeroBHA TeHenus MUAKOCTH B KPYIIBIX M IUIOCKHX KAHAJAX HMEHTCH
TAPaMETPH NPH PARIMYHLIX CPAHMYHBIX YCIOBHAX [JIA PacyeTa TeiuIo-¥ MaccolepeHoca
KaHayoB. OIHAKO I[POTOYHBIE KAHAJBL B PETeHEPATOPAX, BPALIAIMNXCA Telao00MeHHUKAX,
BPAIAIOUIMXCH MACCOOOMEHHBIX ANNapaTax n T, /. 1o HeoOXOMUMOCTH ABIHIOTCH HE KPYTITIOMH
M HE IIOCKMMH. BHJ ¢ TOPUA TAKOIO YCTPOHCTBA, COCTOMINETO U3 MHOIOYHCIEHHBIX KagaIos,
HATIOMMHAET HECKONBKO c¢j10eB rofpHPOBAHHOre KaproHna. I'paHMIy MepHeHAHKYIAPHOrO
TIOTOKY CEYeHHd ONHOTO M3 BTUX XONOB MOMHO NPERCTABUTHL CHHYCHON KDPUBON—m—7,
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ofpasylomelf BepXHIOI0 YacTh KaHAJNA, M MJIOCKON MIACTMHON, PACHOJOMEeHHON Memqy—
m i m ¥ 00pasyolell HUKHIOK YaCTh IPaHMIEL.

B paunmo#t craThe NpeACTABJEHH PacCUMTAHHEIE KOBQ@PMIMEHTH TPeHHUA N KPUTEPUHA
Hyccenpra (uau IllepByna) RiA HeCKOJbKUX BHOBRIX OTHOIIeHMIt M KpuTepneB Buo (wim
CKOPOCTH PeaKIUM Ha CTeHKe). TH PesyiAbTaTH XOPOUIO COTIACYIOTCA C MMEIOLUMUCA B
JINTepaType 04eHB OrPaHUYEHHBIMY SKCIIEPUMEHTATbHEIMH JaHHHMN . ITIOCKOJIBKY MMeuuecH
B JIUTEPAType AAHHBIE OTPAHMYEHB!, HACTOALIMIA aHANM3 JaeT KOHOJHUTEIbHYI0 UHPOPMALMIO
0 pacyeTy O4YeHb BaHHIX (opM Temmo-u MaccooOMeHa mnoBepxuocreit. Iloayunnsie
pesynbTaTel He MOrau OBITh Y/OBJIETBODUTENIBHO OLEHEHb M0 pesylbTaTaM s Kpyribix
WM TJIOCKUX KAHAJIOB, [OTOMY YTO U3-33 YITIOB B CHHYCOMTAIBHOM KaHAJe MOJy4YaeTcs
COBEPIIEHHO OTIIMYHAA reoMeTpuA. PesynbTaTel Takue 3HAUMTEIBHO OTIMYAOTCA OT MOMY-
YeHHHX B TPeyroabHOM KaHaje. HeoGHYHHM pe3ynbTaTOM CHHOCOMAAIBHON TeOMeTpHH
ABMIOCH TNOBefeHue Kpurepus Hyccenbra. Hpurepuft ymenbinaercs ¢ yMeHbLIeHHEM

Kkpurepua Buo.
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