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Ah&a&-Heat and mass transfer design parameters are readily available for flow in circular and flat ducts 
for a variety of boundary conditions. However, the boundaries of the flow passages found in regenerators, 
rotary heat exchangers, rotary mass exchangers, etc. are usually, of necessity, other than circular or 
parallel plate. One very common exchanger made up of many flow passages looks like the end view of 
several layers of corrugated cardboard. The boundary of the cross-section normal to the flow of one of 
these passages may be represented by a sine curve from -1~ to n forming the upper portion of the duct and 
a flat plate stretched between ,- x and x to form the bottom portion of the boundary. 

This paper presents the computed friction factors and Nusselt numbers (or Sherwood numbers) of this 
geometry for several aspect ratios and Biot numbers (or wall reaction rates). These results agree well with 
the very limited experimental dam reported in the literature. Since the data in the literature am limited, tlus 
analysis provides additional design information on a very important heat and mass transfer geometry. The 
results obtained could not be adequately estimated from the results of a circular geometry or a flat duct 
because the comers in the sinusoidal duct provide an inherently different geometry. The results also differ 
considerably from a triangular duct. An unusual result for the sinusoidal geometry is the behaviour of the 

Nusselt number. It decreases with decreasing Biot Number. 

NOMENCLATURE 

half duct height as shown in Fig. 1; 
area of duct ; 
quarter duct width as shown in Fig. 1; 
wall Biot number, Bi = 2ah,/k ; 
heat capacity ; 
concentration ; 
dimensionless concentration ; 
diffisivity ; 
hydraulic diameter, D,, = 4A/F ; 
truncation error ; 
dimensionless velocity 

f= ~z,W~/d4(4a2)~ 
friction factor defined by equation (8) ; 
dimensionless velocity, u,/U ; 
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wall heat transfer coefficient, con- 
stant ; 
thermal conductivity ; 
wall reaction rate constant ; 
constant defined by equation (11) ; 
dimensionless wall reaction rate ; 
Peclet number, N, = N,, . N,,; 
Prandtl number ; 
Reynolds number, D,Up/p ; 
Sherwood number, k,D,jD ; 
local Nusselt number defined by 
equation (33) ; 
local Nusselt number defined by 
equation (36) ; 
pressure ; 
wetted perimeter ; 

AWW2, MAO2 ; 
time ; 
temperature ; 
initial temperature ; 
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wall temperature ; 
dimensionless temperature defined by 
equation (21) ; 
velocity component in z direction ; 
average velocity in z direction ; 
coordinate as defined in Fig. 2 ; 
coordinate as defined in Fig. 2 ; 
coordinate as defined in Fig. 2 ; 
hydrodynamic entrance length ; 
coefficients defined by equation (57); 
aspect ratio, a/b ; 
dimensionless length, zD,/4a2N,, ; 
dimensionless coordinate, q = yj2a ; 
angle defined in Fig. 3 ; 
viscosity ; 
dimensionless coordinate, t: = x/2b ; 
density ; 
dimensionless time ; 
wall shear stress. 

INTRODUCTION 
THE CORRUGATED duct geometry is quite com- 
mon in rotary heat and mass exchangers and is 
becoming more so. The geometry is advan- 
tageous because of its simplicity of construction 
and large surface area. A limited amount of 
experimental measurements of heat transfer 
coefficients have been published [l]. No analy- 
tical studies have previously been made on this 
geometry. Because of the nature of the flow 
passages as well as the small size of the passages, 
it is very difficult to measure anything but 
overall unsteady state measurements. Because 
of the dearth of experimental data, the analytical 
solution of this problem is important and 
supplies much needed design information. 

The corrugated duct geometry is illustrated 
in Fig. 1. The flow is normal to the page. It is 
observed that a single tube may be approxi- 
mated quite accurately with a sine curve for 
one portion of the boundary and a flat plate 
on the remaining part. This geometry is in- 
herently different than most geometries which 
have been studied analytically including the 
triangular duct. The reason is the shape of the 

corners which provide very high flow resistance 
and poor heat transfer. The zero angle of 
contact produces a much larger stagnant volume 
than for triangular passages. The local heat or 

mass transfer coefficient becomes very small 
in the corners, thus causing a much lower 
overall coefficient [ 11. 

The primary methods which could be used 
to solve this problem are: 

1. Completely analytical solutions. 
2. Variational methods which rely upon 

using satisfactory trial functions. 
3. Finite difference techniques. 

The first is useful to prove that Nusselt 
numbers approach a constant for large values 
of the flow direction. A finite difference tech- 
nique has been used here to obtain the numerical 
results. 

The unsteady state problem has been reduced 
to a steady state problem in the initial time 
period. The solution of heat or mass transfer 
problem is a Graetz type problem and pro- 
duces Nusselt numbers which can be used 
in overall studies of the unsteady state problem 
such as the ones performed by Locke [2] and 
Schumann [3]. These later studies assume that 
the heat transfer coefficient is known. The 
analysis presented here determines it. The 
effects of peripheral and axial conduction in 
the solid have been neglected here and are 
probably negligible in the mass transfer prob- 
lems considered here. In the heat transfer 
problem, the axial conduction effect is negligible 
for certain regions of flow, duct size, and material 
as indicated by an overall study [ 1, 4, 51. The 
effect of peripheral conduction is also negligible 
in certain instances depending upon the material 
and its thickness. This effect may be estimated 
from a study performed for a rectangular 
channel [6]. The heat or mass transfer in the 
normal direction in the wall has been assumed 
infinite. This is a good assumption for heat 
transfer but may be important in certain mass 
transfer problems. 



FIG. 1. Corrugated configuration. 

H.M. 
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FORMULATION OF EQUATIONS 

velocity profile 

+ 0 

All the assumptions normally made in a 
Graetz problem will be used here [7, 81. The 
velocity profile will be assumed independent of 

P$C&!%. ;;: 

the heat or mass transfer processes occurring. Equations (l)-(4) imply that ~?p/az is a constant. 

The fluid and flow matrix properties are LLty=2a.&x=2b.< 

assumed constant. Density changes due to 
temperature and concentration variations, there- 
fore, will be neglected. This is a good assumption ‘(” ?) = (_ dp;$) (2c)z 

for many heat exchangers as well as chemical 
reactors with small changes in the number of 

so that equation (4) becomes 

moles and a small heat of reaction and is par- 2 azf azf 
titularly good for the sorption of water as in Y 

a rotary dehumidifier. The momentum entrance 

p+atl,= -1. 

length will be assumed small and only the fully The dimensionless velocity is related 

developed profile will be calculated. average velocity U andfby the relation 

The flow geometry is indicated in Fig. 2. 
Since the flow is independent of the unsteady 

% f (L ?) 
c = fs f dl d,, = & ?) 

(5) 

to the 

(6) 

/ 

-)A 2b r ,I 
FIG. 2. Flow geometry. 

state heat or mass transfer problem, all unsteady 
state terms in the continuity and momentum 
equations may be neglected. Since the flow is 
fully developed, u, and u,, are zero. With these 
assumptions, the continuity equation becomes, 

C!LL() 
az - * 

The x, y and z momentum equations utilizing 
the above assumptions and equation (1) becomes 
respectively, 

ap 0 ax’ 

where JJ indicates integration over the region 
bounded by q = 0, and q = 1 + cos K<. 

The average velocity is 

u = (- G-W9 (24’ . ss f d5 d,, 

P 
(7) 

The friction factor F may be determined from 
equation (7) and the usual definitions 

dp H --=__ r 
dz A’ 

F U2 

z=4p2 

where r is the average wall shear stress, ij is 
the perimeter, and A is the area. The friction 
factor may be solved for as 

F= -1 

[NR~. fs f dt dtll . (8) 

As usual in laminar flow, F . XV,, is independent 
of the flow rate. The pressure drop in the 
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entrance region as well as the hydrodynamic 
entrance length can be estimated from the work 
of McComas [9]. The pressure drop in the 
entrance region is 

(9) 

The entrance length, Z,, is given by 

w,l~)* - 1 - K z e 

D,N,, = ~ c 
(10) 

where U, is the maximum velocity. 
C is from equation (8) in the form F = C/N,, 

and 

K=Zj+[[&$ - ($]d<dq (11) 

brought to a uniform temperature by passing 
a gas of uniform temperature through it for a 
sufficient amount of time. The matrix is then 
moved quickly to a stream parallel to the first 
but at a different temperature by means of a 
sliding mechanism. This experiment closely 
describes the actual operation of a rotary 
heat or mass exchanger where different portions 
of the exchanger are exposed to different 
streams. 

The equations which describe the tempera- 
tures are : 
In the gas phase 

(131 

The relation between the dimension a and the 
hydraulic diameter is Where viscous dissipation has been neglected 

and fully developed flow is assumed. Calculated 

‘= 1 + j [1 + [~~sinrr[)‘]‘d~ (121 

values of the momentum entrance length are 
presented in the results section. The incoming 
temperature of the gas is 

0 T(t, x, y. 0) = ‘& 

In the solid vhase 

(141 

A HEAT TRANSFER PROBLEM 

The usual experimental steady state technique 
of measuring heat transfer coefficients in a 
single tube cannot be used for the geometry 
under consideration [2]. In a single tube, a 
fluid with a large thermal capacity may be 
circulated on the outside of the tube to maintain 
the surface temperature of the tube constant. 
One of the principal advantages of the sinu- 
soidal duct is the fact that it fills the entire space 
when combined with other tubes of the same 
geometry. However, the fact that it does exist 
in a matrix prohibits the above steady state 
experiment. Therefore, an unsteady state ex- 
periment must be performed. Locke [2] dis- 
cussed many different experimental methods 
of determining the heat transfer coefficient. 
Howard [l] has performed a very accurate 
experiment. The temperature of the matrix is 

p& 2 = k,v*T, (15) 

T,(O, x, y, z) = Ti. (16) 

The heat flux across the layer between the 
gas and solid phase is : 

- k g = h, [ T(interface) - T,(interface)] 

= __k CT, 
’ an (I71 

where n is the normal at the surface. 
A layer which produces an effective resistance 

between the fluid and solid is assumed to exist 
to take into account the possibility of fouling 
by a thin layer of stagnant fluid such as oil or 
deposition of a crud in the exchanger. Substitu- 
tion of dimensionless quantities into equation 
(13) yields 
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N 

where 

t’ = 4 and z 0 = a characteristic time. 
TO 

r= Z 

N,. 4, P@U2 

NP~ = N,, . NP,. where 

The characteristic time of measurement is 
at least on the order of one second, and using 
r. equal to one second produces a value of 
10T4 for the coefficient of aTI&‘. 

For Peclet numbers from 10 to 100, the 
coefficient of a2zyay2 varies from IOe2 to 10m4. 
Since the coefficients ofthese terms are extremely 
small, these terms may be dropped to yield the 
equation 

MASS TRANSFER-A CATALYTIC REACTOR 

The mass conversion in a catalytic reactor 
may be described by equations (22)-(24) if the 
reaction rate is described in terms of one 
component 

aT 2a2T a2T 
s(m~=Y Yjj-p+atl” 

with the initial condition 

W, ?, 0) = T. (19 

Because of the large thermal inertia of the 
solid relative to gas, the temperature of the 
solid may be assumed constant during the 
initial transient period so that equations (15)- 
(17) may be replaced with 

_p 
i an w 

= ‘,(T, - 7J =k~(T, - Tsi), (20) 

where w indicates the layer between gas and 
solid and 6 indicates the thickness of this layer 
and is assumed constant. The solution of 
equations (18)-(20) can yield results which will 
relate the mixing cup inlet and outlet tempera- 
tures to, NPe, y, and the wall Biot number, 
2~. k,/S . k. Although the outlet temperature 
is a function of time, the required value at t = 0 
can be obtained by extrapolation. 

In terms of the dimensionless temperature, 

T=T-T,, 
IT;r- 

(21) 

Equations (1 Q-o-(O) become 

aT 2a2T a9 
sm)~=Y ai;+p (22) 

m, 45 0) = 1 (23) 

aT - --I ai w 

= BiTI, 

- n 

Iz = 2a’ 

DE& C 
an w” 

where the equation of species is to be written 
in terms of mass units-since the mass of the 
system is constant [8]. This problem may be 
described by replacing c = CJCi in equations 
(22) and (23), where Ci is the initial mass fraction, 
and replacing equation (24) by 

(26) 

where 

K =kW.2a 
W D ’ 

the dimensionless wall reaction rate. 

MASS TRANSFERSORPTION 

The sorption of water on a salt is an unsteady 
state problem. However, the estimates and 
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consequent simplification of the transfer equa- 
tion apply to transfer of water from the gas 
phase to the solid. Although the total mass of 
the system is not constant, the difference 
between the inlet and outlet mass flow rate 
cannot be changed by more than one per cent 
due to the loss of water vapor. Thus, the velocity 
may be described by equation (4). The boundary 
condition, when using the diluteness assump- 
tion, may be expressed as 

U.T,.A = fiuZ. T.d?cdy. (30) 

In terms of the previously defined dimensionless 
velocity, 

r, = ff s(5, V) T(L i> r) . d5 dv. (31) 

The local average heat transfer coefficient 
h,(z) defined at a given z but an average over 
the cross-section is defined by the simple 
overall balance 

-DE= k,(C - C,,) 
(27, A.U.,C,~= -hZF (32) 

where C cL is the equilibrium mass concentration where the last term in this equation is an 

in terms of the vapor pressure in equilibrium average wall temperature over the boundary at 

with the hydrate. The equilibrium vapor pressure any [. In terms of the previous dimensionless 

at constant temperature is independent of the 
variables, 

I /..\-I ‘. 
concentration in the solid (unless a new hydrate 
is formed) so that C,, is indenendent of time. 

Nu, = - (33) 
lw) 

Ifc is de&red as -- where 

(28) Nu, = !$! (34) 

the boundary condition becomes 

$-KC 
an w’ 

and ‘ii, represents the last term in equation (32). 
An overall local heat transfer coefficient 

(29) h,,(z) which is defined in terms of the solid 
temperature is also useful to the engineer. It is 

Replacement of c in equations (22) and (23) defined as 
produce the identical set of equations to be 
solved as in the previous two sections. The AUpCp 2 = - h,$( T, - Y&i). (35) 
fact that the physical process is assumed 
isothermal is reasonable in the initial time In terms of dimensionless variables 
period and for a solid with a large thermal 
capacity. An important extention of this problem Nu _ _ 1 5 ’ d%ld< 

has been presented by Onischak and Gidaspow 
oz - 

0 4 2a 77’ 
(36) 

[lo] where they show that an engineering 
pseudo-equilibrium value may be used instead 

The Nusselt number, Nu,,, is more useful than 

of the true equilibrium value. This pseudo- 
Nu, to the engineer, but Nu, is normally re- 

equilibrium value is reproducible and almost 
ported in the literature because it varies much 

independent of time and flow rate. 
less with boundary conditions and therefore 
may be reported more accurately. Also, the 
values of Nu, approach the constant flux 

OVERALL PARAMETERS--FULLY DEVELOPED Nusselt numbers as the Biot number approaches 
SOLUTION zero. One may be obtained from the other 

The mixing cup concentration or temperature because a relationship may be derived between 

at any axial distance is defined by them in terms of the boundary conditions by 
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integrating the partial differential equation in 
the gas over the cross section and using Green’s 
theorem in the plane to obtain 

u,.T.dxdy 

=k &!+$)dxdy (37) 

= k$VT.nds 

= kF$ (38) 

Integration of the boundary conditions over 
the boundary yields 

kg = -h,.;$(T, - I&)& (39 

or by definition 

The defmition of h, in equation (40) may be 
seen to be coincident with the definition of 
equation (32) by substitution of equations (30) 
and (40) into equation (38). 

Then Nu, may be related to Nu,, by combin- 
ing equations (30), (32), (39) and (40) 

dT, - 1 
PC&‘A~ = -P (l/k, + l,kd(T” - T,i)* (41) 

Comparison of equation (41) with (35) yields 
an expression for h,. In terms of Nusselt 
numbers, the desired relation is 

1 1 1 

Nu,, = Nu, + Bi(D J2a)’ (42) 

Therefore, it is seen that only Nu, need be re- 
ported even for this unusual geometry. When the 
resistance at the wall is negligible (Bi = co), then 

Nu,, = Nu,. 

The existence of a fully-developed solution 
to this problem further reduces the amount of 
results which must be reported. The form of the 

fully developed solution can be obtained by 
separation of variables. 

Let T = Z(c)G(<, q) and separate variables 
to obtain : 

% + 822, = 0 

y 

2 a2G, a2G, 
-- 

at2 + a+ 
+/?;.g.Gk=O w 

Orthogonality may be demonstrated by com- 
bining two solutions G, and Gj and integrating 
in the usual way [ 1 l] to obtain 

SS [G,V’Gj - GjV2G, 

+ (si - flt)gGj* GJ dzdq = 0, (4) 

where 5 = t/y. 
Green’s theorem states : 

JJ (G,V’Gj + VG, * VGj) dz dq 

= 8 G,VGj . n ds. (47) 

Equation (46) may be recast as 

~ (G,VGj - GjVGJ . n dS 

= @i - fl;) JJ gGj. G, dT dq. (48) 

Boundary conditions substituted in equation 
(48) then require for k # j 

SS gG,G, dT dll= 0, 

which is the condition of orthogonality. The 
general solution to the problem may be written 
as: 

T = $I -4, exp (- P.“r) GAL r) (49) 

where 

(50) 

Since g is posh;ve within the region, #I.’ are all 
real and positive and the eigenfunctions form 
a complete set. If the series converges, the first 
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term of the solution must become the dominant 
term for increasing 5. 

The quantities of interest approach the 
following fully developed forms : 

T = 4 exp C-P8 G,(5, ~1 (51) 

K = (A,.SSg.G,).exp(-P:5) (52) 

(53) 

Therefore the numerical solution need only 
be continued until T, and T, become straight 
lines on semilog paper and until Nu,, (or Nu,) 
become a constant. 

SOLUTION BY FINITE DIFFERENCES 

Since the equation for the velocity profile 
does not involve the temperature function, the 
velocity profile may be determined indepen- 
dently of the temperature profile. Then, the 
temperature profile, and consequently the total 
heat transfer, can be solved for after the velocity 
profile is substituted into the energy equation. 

A pseudo-unsteady state technique was used 
to solve for the velocity profile. This technique 
consists of adding an unsteady state term to 
equation (5) which becomes 

af a7 2a2f 
a7 -=l+p+y Fj. (54) 

The steady state solution to this equation is the 
solution to equation (5). Equation (54) was 
treated by a second order finite difference 
approximation and iterated until it converged 
to a steady state answer. The usual implicit 
molecule was used to solve this equation. 

On the grid next to the lower boundary, the 
explicit method may be used since no additional 
stability restriction will be added. However, on 
the irregular wall, a completely implicit mole- 
cule was used. Use of an explicit molecule on 
the irregular boundary would introduce a very 
restrictive stability requirement on the entire 
calculation. 

The energy equation with boundary condition 
given in equation (24) and initial condition 
given in equation (23) were solved by the method 
of Dufort and Frankel [12]. The three-dimen- 
sional analogy of Dufort and Frankel’s three 
grid finite difference scheme is : 

T(Z + 1.J.K) (g(J,K) + 2R(l + y’); 

= T(Z - l,J,K){g(J,K) - 2R(l + ;I’,) 

+ 272R(T(Z,.Z + 1,K) + T(Z,J .-- 1,K); 

+ 2R:T(Z,.J,K + 1) + T(Z.J,K - 1,). (55) 

The fact that the velocity is very small near the 
wall could cause severe stability restrictions. 
Use of this method alleviates this problem. 

Since the boundary condition on the wall 
involves the derivative at the wall, a satisfactory 
expression which is of the same order of error 
as the interior molecule must be used. A five 
point expansion is satisfactory. This is obtained 
by expressing the normal derivative in terms of 
its components. 

Following Greenspan [ 131 a six point Taylor 
series expansion was used to represent the 
normal derivative : 

5 
aT aT aT -=--. 
an aq 

sm E, + ag. cos 1 = 
c 

c(,T, (56) 

i=O 

where E. is the angle shown in Fig. 3. 

FIG. 3. Irregular boundary geometry. 
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A Taylor series expansion for points T0 
through T5 about point 0 is substituted into 
the right hand side of equation (56). Like 
derivatives are matched and the resulting 
equations are solved simultaneously for ao-u5. 
The values of ai used for the molecule about 
point 0 are given below : 

(h + 2d)y cos 1 
a, = 

d(h + d) 

a2 = 
-(hd +eh+ de)sin1 

h’(e + h) 

h 
a4 = e(esinl 

- dsin 1 a 
5 - ,,2 

(57) 

a3 = 
hdy cos 1 - d(d + h) sin 3, 

h2(d + h) 

a1 = 
(hde - h2d + d2e)sinl - hey(h + d)cosl2 

h2 de 

By symmetry, these coefficients can be used to 
obtain the proper coefficients for a similar 
equation about point 4. In order that no stability 
restrictions be introduced at the boundary, 
equation (56) is written in a completely implicit 
manner about points 4 and 0. Furthermore, the 
equation about point 1 is also implicit. These 
three equations are solved simultaneously for 
the temperatures at points 1, 0, and 4. There are 
locations on the irregular boundary where 
more than three simultaneous equations are 
needed and, in general, the smaller the grid size 
chosen, the greater the number of simultaneous 
equations at any boundary point. 

Along the lower boundary, equation (57) 
is also used ; however, it simplifies to a three 
point molecule because of the regular geometry 
shown in Fig. 4. An explicit molecule was 
sufficient at point 1 so T at point 0 can be 
calculated directly. 

An additional complication occurs due to 
the shape of the corner of the duct, which turned 

h 

FIG. 4. Lower boundary geometry. 

out to be a formidable problem. The corner 
geometry, with a grid overlay is illustrated in 
Fig. 5. The small portion of the comer including 
points l-7 had to be removed from the analysis 
since no suitable molecules are available for 
these. As the grid size is made smaller, the size 
of the region removed decreases, and in the limit 
it becomes negligible. Notice that in Fig. 5, no 
points in the region are lost. In this comer 
region, points g-14 were solved for simul- 
taneously with the implicit methods previously 
mentioned. 

16 12 9 6 4 2 I 
FIG. 5. Comer geometry. 

RESULTS 

Accuracy of numerical procedure 
In any finite difference investigation, it is 

necessary to test the convergence and stability 
of the results. In the absence of any theoretical 
solutions, convergence and stability may be 
tested by obtaining results for different grid 
sizes. Consistency of the finite difference equa- 
tions for the velocity profile is guaranteed and 
the truncation error is of the order 
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E, = O(Az) + O(A# + O(A# 

Specification of R yields 

E, = O(A<)2. 

The truncation of the’ energy equation is also 
of the same order with the same definition of R. 

The results for a grid size of & compared to 
that of & on the same iteration agreed in the 
third decimal place for the velocity at any point 
in the region. In order to compare this technique 
with published results, the velocity program 
was simplified to the case of a triangular duct 
and friction factors were calculated and com- 
pared to published values. For an aspect ratio 
of one, our calculated friction factor was 13.26 ; 
Sparrow [14] reported a value of 13.18 for this 
same case. 

Although all reported results for the tem- 
perature problem were obtained with a A< = & 
grid size, a program with a A< = & grid size 
was also written for convergence testing. Due 

checking the results from the two temperature 
programs was to use a very large Biot number 
for the flux problem and compare the average 
internal temperature to the program with 
constant temperature wall. The infinite Nusselt 
numbers agreed in the third significant figure 
and as the Biot number increases, the average 
interior temperatures approached each other. 

Furthermore, the two Nusselt numbers in 
equations (33) and (36) were calculated and 
checked against each other with use of equation 
(42). The comparison of these is shown in 
Table 1 for selected values. It is seen that 
difference in these values decrease with in- 
creasing Biot number. 

CALCULATED RESULTS 

Table 2 gives the values of F . N,, calculated 
by equation (8) and entrance length from 
equation (10) for various aspect ratios. These are 

Table 1. Comparison of accuracy of & and & grid sizes, aspect ratio of one 
____.~_._ _____~~ __..~~._ ._ _________ __~ _~ 

1 1 1 
Bi NU N% 

l/Nu + l/B.(D@) 

Nu + ---~ ___-____ Nuo a(D,J2a) 1lNuo 

As = & 

0.01 1,183 oGO714 140 124.8 0.89 
0.1 1.380 0.0668 14.9 13.12 0.88 
1.0 1.590 0.4972 2.01 1.86 0.925 

10.0 1,972 1.567 0640 0.633 0.995 
100.0 2.077 2.023 0.494 0.493 0999 

Ax = $ 

001 1,415 oGO737 135 124-7 0.91 
0.1 1.308 0.0703 14.2 13.16 0,925 
1.0 1.524 0.5085 1.97 1.89 0.962 

10.0 1.974 1.579 0644 0.630 0.980 
1000 2.093 2.039 0.49 1 0.490 0.999 

.___.___ ~~-- ~.~~~.~..~ ~ __~ _~_ ~_____.__~_ __~~~ .~~~ 

to the nature of the equations which are solved plotted in Fig. 6 with values for the triangular 
along the boundary, a separate program had duct. For a given aspect ratio, the area of the 
to be written for each grid size so that only triangular and sinusoidal duct are equal and 
these grid sizes were investigated. The tempera- the hydraulic radii differ by 2.5 per cent at 
ture at any grid point agreed to the third an aspect ratio of one. From Fig. 6 it is evident 
significant decimal again. A second means of that the pressure drop is lower for the sinu- 
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Table 2. Calculatedfrictionjktor and entrance length 

O-25 968 0@490 0.0613 2,168 2.355 O-978 
0.50 1005 0.0341 0.0555 2.011 2.290 0.931 
1QO 11.14 O-0294 00465 l-809 2.209 0.809 
1.50 12.07 OQ200 00426 1.750 2.193 0.696 
2.00 12.95 O-0141 oQ401 l-743 2,196 0604 
3-W 13.89 OW80 QO398 1.813 2.241 O-472 

14 

r 

and shows a maximum deviation of 6.5 per 
cent over our calculated values of F . N,,. As 
the aspect ratio increases, the friction factors 
for the t~~~~ and sinusoidal duct approach 
each other. The entrance length is shown in 
Fig. 8 and shows the entrance length for the 
sinusoidal duct is longer than that of the 
triangular duct. Figure 9 shows the fully 
developed velocity profile for the half-duct 

bO34 

G 2 
I 9” 

5050 

0.046 
0 This work 

a Eckert and Irvine [I73 
A Sparrow [I41 

90 1 IQ I 2.0 I 3.0 I 

Aspsct mtio, 7 

FIG. 6. Friction factor for sinusoidal duct. 

soidal duct than for the triangular duct. This 
statement holds even if the pressure drop for 
the two ducts are compared at equal flow rates. 
The data of Howard [l] is compared in Fig. 7 

FIG. 7. Comparison of measured and calculated friction 
factors. 

FIG. 9. Fully developed velocity profile for an aspect ratio 
of one. 

o This wrk 
A McComas [Q] 

@04’ Triangular 
duct 

I 
w3*02 

I I 
IQ 2.0 

Aspect rotio, y 

FIG. 8. Entrance length for sinusoidal duct. 
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with an aspect ratio of one. The isoclines are 
lines of constant u,/U. It is interesting to note 
that the max~um velocity occurs closer to the 
center than those of the triangular duct [14j 
for similar aspect ratios. 

For Howard’s data, the ducts had aspect 
ratios of 0.85 and 0.89. For these aspect ratios, 
the entrance length parameter was Z,/L)hNR, = 
O-048. His data was taken over a range of di- 
mensionless lengths corresponding to : 

> o-37. 

This indicates that the duct length was at least 
8 times the hydrodynamic entrance length. 

On the other hand, Kays and London [15] 
reported FN,, to be between 18 and 19 for a 
sinusoidal duct with an aspect ratio of 2.77. The 
calculated value of FNR, was 13.8. The calcula- 
ted entrance length was Ze/DhNRe = 0.0392. 
These data were taken over a dimensionless 
length range of: 

L 
0.020 < ___ < 0,041 

D&N,, 

This indicates that all the data were taken in the 
hydrodynamic entrance region and hence our 
results should not and do not agree with 
theirs. 

Figure 10 shows the limiting Nusselt numbers 
as a function of aspect ratio for the case of 
constant wall temperature. This corresponds 
to the boundary condition given in equation (19) 

I I I I I 
I.2 I.6 2.0 2.4 2.8 

Aspect ratio, r 

Fro. 10. Nulhn for constant temperature wall vs. aspect ratio. 

where Bi = CQ. For the case of an equilateral 
triangle, the value of this Nusselt number is 

2.35 [16]. This corresponds to an aspect ratio 
of about 1.73 and from Fig. 10 the limiting 

Nusselt number is approximately 2.37 for the 
sinusoidal duct. Howard presents Nusselt num- 
bers for aspect ratios between 0.85 and 0.89 as 
shown in Table 3. The mean value of NU is 

1 hble 3. Data qf Howard converted to units oj the study 

Friction factor Nusselt number 
F N Ru F.N,, : N,, Nu = j. N,,.N;t, 

Metal : brass ;* = 0.85 

0.0231 496 11.45 OQO524 490 2.25 
0.0595 185 11.0 OGO830 305 1.97 
0.1147 61.1 1068 0.0143 182 2.28 
0,420 24.1 10.12 0.0248 120 2-61 

Calculated value 2,045 

Metal : stainless steel 7 = 0.89 

0.0231 496 11.50 0.00641 3il 1.11 
0.0580 188 10.90 0.0119 183 1.93 
0.1389 73.5 1020 00181 122 I.96 
0410 24.6 10.10 0.0301 12.5 1.94 

0.0455 426 1.72 
0.0726 24.3 1.56 

Calculated value 2.070 

Note: Calculated Peclet number in air is 0.671. 

1.99 and the variance about this value is small. 
The calculated values of Nu for the constant wall 
temperature case corresponding to this aspect 
ratio range is betwen 2.05 and 2.06. Since 
Howard took heat transfer data in stainless steel 
and brass ducts, the assumption of a constant 
temperature wall should be good in light of the 
high thermal conductivity of the metal. 

Figure 11 shows how the dimensionless tem- 
perature in the duct varies as the wall resistance 
changes. These solutions correspond to the 
boundary condition given in equation (19) 
and were obtained for a single aspect ratio, 
y= 1.0. This plot can be used with equation (36) 
to obtain Nu,, as a function of distance and 
equation (42) to obtain Nu,. Table 4 gives the 
values of the limiting Nusselt numbers for ihe 
variable wall resistance cases. It should be noted 
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0.21 0 0.02 004 0.06 0.08 0. IO 

b 

FIG. 11. Temperature vs. distance for an aspect ratio of one. 

Table 4. Limiting Nusselt numbers for an 
aspect ratio ofone 

K,or BT %i, 

0.010 1.415 
0.100 1.308 
10l 1.524 

10.0 1.974 
loo.0 2.096 

co 2.12 

that the limiting values of NU were in every case 
lower than those of the constant temperature 
wall. Reported values of the limiting Nusselt 
numbers for finite Biot numbers for other types 
of geometries are usually higher than those of 
the constant temperature wall [ 161. Thus, 
it appears that the sine duct is a rather unique 
heat transfer geometry. 

CONCLUSIONS 

One might expect that the geometry in Fig. 1 
could be represented by something between a 
circle and flat plate configuration. However the 

friction factors and Nusselt numbers for these 
geometries are much higher than those of the 
sinusoidal profile. The friction factors for the 
triangular geometries, shown in Fig. 6, is within 
10 per cent of those for the sinusoidal duct at 
high aspect ratios (greater than 15), but at 
lower aspect ratios, they differ considerably. 
This indicates that the sinusoidal duct is more 
efficient than the triangular duct since the hy- 
draulic diameters of these two configurations 
are very close. The Nusselt numbers calculated 
for constant temperature wall agree well with 
data previously published. In general thz limi- 
ting Nusselt numbers for the sine duct are lower 
than for other geometries. However, at an aspect 
ratio of 1.7, the Nusselt number for this geometry 
is higher than that of a triangular duct. 

These seemingly inconsistent results arise 
from the corner of the sinusoidal duct where 
there is a relatively large dead space. This is’ 
reflected in the large entrance lengths found for 
this configuration as compared with other 
geometries. 
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ETUDE ANALYTIQUE DES COEFFICIENTS DE TRANSPORT DE CHALEUR OU DE 
MASSE ET DE FROTTEMENT DANS UN I~CHANGEUR DE CHALEUR ou DE MASSE 

A TUYAUX ONDULBS 

R&sum&--Les parametres pour prevoir le transport de masse et de chaleur sont disponibles facilement 
pour l’ecoulement dans des tuyaux circulaires ou plats avec un grand nombre de conditions aux limiten. 
Cependant. les frontieres des conduits trot&s habituellement dans les regenerateurs. les echangeurs de 
chaleur tornants, les echangeurs de masse tournants. etc, ne sont forcement ni circulaires ni a plaques 
paralleles. Un echangeur tres ordinaire constitue de nombreux conduits ressemble a la vue en bout de 
plusieurs couches de carton ondule. La front&e de la section droite normate a I’tcoulement d‘un de ces 
conduits peut etre representee par une courbe sinusoIdale allant de -n a rt formant la portion suptrieure 
du conduit et dune plaque plane etendue entre --II et 71 pour former la portion inftrieure de la frontiere. 

Cet articule presente les coefficients de frottement et les nombres de Nusselt (ou les nombres de Sher- 
wood) calculb pour cette geometric avec plusieurs allongements et nombres de Biot (ou vitesses de reaction 
a la paroi). Ces resultats sont en bon accord avec les don&es exp~r~men~les t&s limitees signal&s dams 
la litterature. Puisque ces donntes sont limit&es, cette analyse fournit une information supplementaire 
de prevision sur une geometric trb importante du point de vue du transport de chaleur et de masse. Les 
resultats obtenus ne pourraient pas &be estimes d’un fai;on adequate a partir de ceux dune geometric 
circulaire ou d’un tuyau plat parce que les coins du tuyau sinusotdal correspondent a une geometric 
proprement differente. Les resultats different aussi considerablement de ceux d’un tuyau triangulaire. 
Un resultat remarquabte pour la geometric sinusoIdate est le compo~ement du nombre de Nusselt qui 

d&croft lorsque le nombre de Bior decroit. 

ANALYTISC~E UNTERSUCHUNG DES WARME- ODER STOF~B~RGANGS UND DES 
REIBUNGSKOEFFIZIENTEN IN EINEM WELLROHR-WARME- ODER 

STOFFUBERTRAGER 

Zusammenfas=g-Fur Stromungen in Rohren und zwischen parallelen Platten unter verschiedenen 
Randbedingungen lassen sich die, ftir Auslegungsrechnungen benbtigten Wiirme- und Stoffaustausch- 
Parameter leicht auf&den. Indessen handelt es sich bei den Striimungsquerschnitten von Regeneratoren, 
rotierenden W&me- und Stoffaustauschern etc. aus technischen Grtinden meist urn andere, als die oben 
beschriebenen Geometrien. 

Eine h&fig zu findende Austauschbauart mit vielen Stromungskanalen zeigt eine Querschnittsform, 
fhnlich einer Schichtung aus mehreren Lagen Wellpappe. Die Berandung eines dieser, senkreeht zur 
Str6mungsrichtung geschnittenen Kanlle karm durch eine Sinuskurve fiir die Kanaloberseite und eine 
ebene Platte filr die Kanalunterseite-jeweils mit den Intervallgrenzen --n und +n+-dargestellt werden. 

Die vorliegende Arbeit zeigt berechnete Reibungs~iwerte und Nusselt-Zahlen (oder Sherwood-Zahlen) 
ftir diese Geometrie bei mehreren Abmessungsverhlltnissen und Biot-Zahlen (oder Wandreaktionsraten). 

Diese Ergebnisse stimmen recht gut mit den sehr sparlichen, in der Literatur zu findenden experimen- 
tellen Daten ilberein. Da die Literatur sehr wenig Daten enthlilt, bietet diese Untersuchung zu&tzliche 
Information fiir die Auslegung einer sehr wichtigen WSirme- und Stoffaustauscher-Geometrie. Es war 
nicht moglich, die erhaltenen Resultate zufriedenstellend aus den Ergebnissen ftir das Kreisrohr oder den 
ebenen Spalt herzuleiten, da aufgrund der Ecken im Kanal mit teilweise sjnusf~rmiger Berandung eine 
wesentlich verschiedene Geometrie vorliegt. Die Ergebnisse zeigen such betrlchtliche Abweichungen 
von denen eines Dreieck-Kanals. Ein ungewohnliches Ergebnis bei der Sinusgeometrie ist das Verhalten 

der Nusselt-Zahl : diese nimmt ab mit fallender Biot-Zahl. 

~EHOTa~~~-~~~~ J’CJIOn5f2i TC?~tellMIH ~LI~MKT,l U Gj’,v~“bIX It II.IOCEiUX h^ii!l&YEiX iZM?K)T<‘H 
napaMerphr npn paanris~ux rpaHmfHbrs ycnonafrx gnn pacHeTa TC?II.TO-M Macrorrepesoca 
Hartanon. Oniiano HpoToHHbre HaHaabr n pereHepaTopax, BpamatomHxcH TennooSmeHsHHas, 
BpaiL@kHI@fXCfJ ~IaC~OO~~~eliHb~X aHnapaTaX H T.;I. n0 ~ieO6XO~~MOCT~ RRJIHioTCa He HpJ’rJItoMH 
H He nJIOCHHMiI. 1JM.Q c TopHa T;IHOI’O yCTpOirCTna, CocToffmero r13 ~HoroY~c~e~H~~ HaHaJron, 
HanOMHHaeT HeCHOJlbKO CJIOeB rO#pHpOBaHHOrO KapTOHEl. I’paHEiisy IleplleH~UKJ’JlFlpHOI-0 

IIOTOKJ’ Cl?Yf?HAFi ORHOP K-3 RTMX XOROB MOHtHO IIpt?J(CTaBHTb CHHyCHOt HpMBO&-r-71. 
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o6paaymqet BepXHIOKI 4aCTb KaHana, II IIJlOCK0i-l IUIaCTHHOt, paCllOJlO~eHHOt MeWay- 

7~ ~~o6pa3y1O~e~~arn~mo~aCTb rpaHElqbI. 

B AaHHOti CTaTbe IIpeHCTaBJIeHbI paCCWiTaHHbIe K03@Jl$H~AeHTbI TpeHMR II KpkITepHR 

HyCCenbTa (AJIEI mepByna) R3IH HeCKOJIbKIlX BHROBbIX OTHOlUeHElt H KpHTeptieB BEi0 (IfJIM 

CKOpOCTH peaKqHH Ha CTeHKe). 3TII pe3yJIbTaTbJ XOpOIIIO COrJiaCylOTCH C HMeIO~MMISCK B 

nIlTepaTypeOYeHBOrpaHaseHHbIMn3KCnepUMeHTanbHnMHAaHHbIMEI.nOCKOJIbKyIIMeH)~lleCR 

BJIATepaTypeHaHHbJe OrpaHHYeHbI,HaCTOHU@ aHaJI113 ~aeTROIIOJIHMTeJlbHyH, IIH@OpMa~IUO 

no pacseTy O'ieHb BaH(HbIX @OpM TeIIJIO-H MaCCOO6MeHa IIOBepXHOCTet. nOJIyYHHble 

pe3yJIbTaTbI He MOrJlH 6bITb y~OBJfeTBOpATeJlbH0 OUeHeHbI II0 pe3yJIbTaTaM AJIK KpyrnbIx 

UJII4 IIJIOCKHX KaHaJlOB, IIOTOMy YTO H3-3a yrJlOB B CHHyCOUHaJlbHOM KaHaJIe IlOJlyqaeTCH 

COBepUIeHHO OTJIWlHaR reOMeTpkIK. Pe3yJIbTaTbl TaKWe 3Ha4ATeJIbHO OTJIMYaIOTCH OT IIOny- 

YeHHbIX B TpeyrOJIbHOM KaHaJIe. HeO6bIYHbxM pe3yJIbTaTOM CHHOCOH~a.,IbHOi$ reoMeTpna 

XBIIJIOCb IIOBeReHIle KpllTepIfR HyCCenbTa. HpklTepdi yMeHbIUaeTCR C yMeHblUeHMeM 

KpHTepHR &lo. 


